Box 1

Behaviour of a simple positive feedback loop: sensitivity amplification, bistability, hysteresis and irreversibility

Positive feedback loops have the potential to convert a transient stimulus
into a self-sustaining, irreversible response. But irreversibility is not an
inevitable consequence of positive feedback, nor is irreversibility the only
useful systems-level property that can emerge from systems with
positive feedback loops. This is true in the case of complicated positive
feedback systems, such as the p42 MAPK/Cdc2 system in oocytes, and
is also true (and can be more easily seen and understood) in simpler
systems, such as the one shown here (a).

Feedback

as a function
&l Stimulus of A* o b c
Ve
Q
8
o f=0.00 f=0.01
@—=®
o|d e f
1%2]
e — — —
o == Zo - .-
o o - .-
o f=0.02 f=0.03 f=0.04
0|9 h i
2 = - - .
9] .- .- no@F
o .- - P
8 A o ::‘ -
o f=0.05 f=0.06 / f=0.07
ol k |
2| S — . — .
o] .- T .- --
Q .- 1 .- -
g - . .”
f=0.08 ° = . =
o /o f=0.09 /r f=0.10
o™ n °_
2 ;’/ e [ =——————— |
(=8 .- 5 .- - -
of : - - g .- .-
ol : ." : .- E -
B :-° 8¢ P
x|/ f=0.11 Jr f=0.12 / f=0.13
Stimulus Stimulus Stimulus

This system consists of a signalling protein that can be reversibly
converted between an inactive form (A) and an active one (A*). The

activation reaction is assumed to be regulated in two ways: by an
external stimulus (equation (1), first term); and by positive feedback, with
a nonlinear Hill equation relationship between the amount of A*
produced and the rate of production of more A* (equation (1), second
term). The inactivation reaction is assumed to be unregulated; its rate
is proportional to the concentration of A* (equation (1), third term).
Thus,
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where n denotes the Hill coefficient, K is the effector concentration
for half-maximum response (ECsp) for the feedback as a function of
[A*], and f represents the strength of the feedback.

This differential equation was solved numerically (by using
Mathematica 2.2.2) to determine the relationship between stimulus
and steady-state response ([A"]), assuming that n =5, K= 1,

Kinact = 0.01 and stimulus = 0-1, and assuming a range of values
of f. The results are shown in b-o, with the calculated steady-state
responses shown as unbroken lines and the discontinuities shown
as dotted lines; the no-feedback response (dashed lines) is
included for comparison.

When f = 0, the response is monostable and the stimulus-response
curve is a smooth michaelian hyperbola (b). As the strength of the
feedback increases, the stimulus—response curve acquires a
sigmoidal shape (c-h). This occurs because the feedback has been
assumed to be cooperative or ultrasensitive. The sigmoidicity makes
the response of A* more switch-like (but still monostable).

At f = 0.07 (i), the stimulus—response curve splits into two curves:
one representing the amount of stimulus needed to induce the system
to turn on, the other representing the amount of stimulus needed to
maintain the system in its on state. At this point, the system becomes
bistable for some values of stimulus (that is, there are two discrete,
stable steady states for a single value of stimulus) and the system
shows hysteresis, meaning that the dose-response relationship is a
loop rather than a curve. The range of stimulus over which the system
is bistable and the extent of the hysteresis both increase as fincreases
(i-k).

Eventually, the feedback becomes strong enough to maintain the
system in the on state even when the stimulus is decreased to zero (I-0).
At this point, the system may be able to convert a transient stimulus
into an essentially irreversible response. But even in a system such as
this, stochastic effects still have the potential to make the response
reversible®=°,
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Box 1. Feedback and bistability in homogenous reaction networks

The response properties of a homogenous reaction network are
determined by the topology and kinetic parameters of the reactions in
the network. For autonomous systems, the reaction rate constants k
are time invariant and the reaction rates v are functions of the time-
dependent concentrations of reactants Sit). Figure la details a typical
cyclic reaction scheme in which a substrate (S) is phosphorylated (SP)
by a kinase and dephosphorylated by a phosphatase (ppase) (Figure
la). The input of the system is the kinase activity (kin) and the output
the phosphorylated substrate (SP). Can this system generate discrete
states? We assume that the kinase and phosphatase reactions obey
saturatable Michaelian kinetics. The response of the system (SP) to the
input (kin) at steady state is calculated by setting the change in output
reactant SP over time to zero in the differential equation that describes
the change in SP over time owing to the forward (v, ) and backward
(v_) reactions (Equation I):
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where K, is the Michaelis constant and k., is the catalytic constant for
the kinase (") and phosphatase (PP2%°). By using the conservation of
substrate and product, we eliminate the variable S and simplify the
equation by normalizing SP by the total of substrate and product
concentration SO (sp: molar fraction of SP) (Equation Il)
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[Eqn 1]

where J is the Michaelis constant normalized to S0. Solving for [sp]
yields an ultrasensitive response to the kinase activity kin (Figure la).
This type of cyclic reaction can thus generate a steep response to input
that resembles the behavior of a switch. However, for a true switch

that is characterized by a discontinuity in the dose response
relationship, a positive feedback must be incorporated in the cyclic
reaction scheme. This can be achieved for example when Sis a kinase
that is activated by phosphorylation and, in turn, activates a kinase
that catalyses the phosphorylation of S (Figure Ib). The time-
dependent concentrations of the phosphorylated reactants of this
reaction network are now given by two coupled differential equations
(Equations Il and IV):

diSP| _  _ _k&Ikinl[SO—SP] k5{1S'PISO—SP)

dt T KEM+[S0—SPT T K3P +(S0—SP] [Eqn 1]
_ ket Ippasel[SP)
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in which the concentrations S and S’ have been eliminated by using
the conservation of substrate and product for both reactions. Solving
for SP at steady state can yield a discontinuity in the input-response
curve for certain settings of the kinetic parameters. This system can
thus generate a true switch in the response SPto the input signal (kin).
As shown in Figure Ib this system also exhibits hysteresis or complete
irreversibility, which depends on the strength of the feedback. The
curves shown in Figure Ib show that the system contains two stable
steady states (low and high SP) and an intermediate unstable steady
state that defines the threshold of the system. The necessary
ingredients for bistability are thus ultrasensitivity and positive or
double negative feedback. For reviews, see [66,67].
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Figure . Dose-response properties of reaction cycles at steady state. (a) A substrate (S) is phosphorylated (SP) by a kinase (kin) and dephosphorylated by a phosphatase
(ppase), creating a reversible system in which the amount of SP at steady state depends on the relative activity of kin and ppase in a way that can be ultrasensitive. If two
such phosphorylation cycles are coupled in such a way that SPis the active kinase for a second substrate S’ and S’ Pis the active kinase for S (b), a positive feedback loop is
created that can lead to an irreversible switch in the steady-state concentration of SP as a function of [kin]. Grey arrows show [SP] trajectory with increasing [kin]. Black
arrows show the reverse trajectory in which [kin] is decreased, starting from a situation in which all Sis phosphorylated. The difference in the two trajectories shows that
this system exhibits hysteresis, which in this case results in the complete irreversibility in the phosphorylation of S.
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